Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Mol Psychiatry ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678084

RESUMEN

It is well known the potential of severe acute respiratory coronavirus type 2 (SARS-CoV-2) infection to induce post-acute sequelae, a condition called Long COVID. This syndrome includes several symptoms, but the central nervous system (CNS) main one is neurocognitive dysfunction. Recently it has been demonstrated the relevance of plasma levels of neurofilament light chain (pNfL), as a biomarker of early involvement of the CNS in COVID-19. The aim of this study was to investigate the relationship between pNfL in patients with post-acute neurocognitive symptoms and the potential of NfL as a prognostic biomarker in these cases. A group of 63 long COVID patients ranging from 18 to 59 years-old were evaluated, submitted to a neurocognitive battery assessment, and subdivided in different groups, according to results. Plasma samples were collected during the long COVID assessment and used for measurement of pNfL with the Single molecule array (SIMOA) assays. Levels of pNfL were significantly higher in long COVID patients with neurocognitive symptoms when compared to HC (p = 0.0031). Long COVID patients with cognitive impairment and fatigue symptoms presented higher pNfL levels when compared to long COVID patients without these symptoms, individually and combined (p = 0.0263, p = 0.0480, and 0.0142, respectively). Correlation analysis showed that levels of cognitive lost and exacerbation of fatigue in the neurocognitive evaluation had a significative correlation with higher pNfL levels (p = 0.0219 and 0.0255, respectively). Previous reports suggested that pNfL levels are related with higher risk of severity and predict lethality of COVID-19. Our findings demonstrate that SARS-CoV-2 infection seems to have a long-term impact on the brain, even in patients who presented mild acute disease. NfL measurements might be useful to identify CNS involvement in long COVID associated with neurocognitive symptoms and to identify who will need continuous monitoring and treatment support.

2.
Brain Behav Immun ; 118: 318-333, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460804

RESUMEN

Zika virus (ZIKV), the causative agent of Zika fever, is a flavivirus transmitted by mosquitoes of the Aedes genus. Zika virus infection has become an international concern due to its association with severe neurological complications such as fetal microcephaly. Viral infection can induce the release of ATP in the extracellular environment, activating receptors sensitized by extracellular nucleotides, such as the P2X7 receptor. This receptor is the primary purinergic receptor involved in neuroinflammation, neurodegeneration, and immunity. In this work, we investigated the role of ATP-P2X7 receptor signaling in Zika-related brain abnormalities. Wild-type mice (WT) and P2X7 receptor-deficient (P2X7-/-) C57BL/6 newborn mice were subcutaneously inoculated with 5 × 106plaque-forming units of ZIKV or mock solution. P2X7 receptor expression increased in the brain of Zika virus-infected mice compared to the mock group. Comparative analyses of the hippocampi from WT and P2X7-/-mice revealed that the P2X7 receptor increased hippocampal damage in CA1/CA2 and CA3 regions. Doublecortin expression decreased significantly in the brains of ZIKV-infected mice. WT ZIKV-infected mice showed impaired motor performance compared to P2X7-/- infected mice. WT ZIKV-infected animals showed increased expression of glial markers GFAP (astrocytes) and IBA-1 (microglia) compared to P2X7-/- infected mice. Although the P2X7 receptor contributes to neuronal loss and neuroinflammation, WT mice were more efficient in controlling the viral load in the brain than P2X7 receptor-deficient mice. This result was associated with higher induction of TNF-α, IFN-ß, and increased interferon-stimulated gene expression in WT mice than P2X7-/-ZIKV-infected. Finally, we found that the P2X7 receptor contributes to inhibiting the neuroprotective signaling pathway AKT/mTOR while stimulating the caspase-3 activation, possibly two distinct pathways contributing to neurodegeneration. These findings suggest that ATP-P2X7 receptor signaling contributes to the antiviral response in the brain of ZIKV-infected mice while increasing neuronal loss, neuroinflammation, and related brain abnormalities.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Embarazo , Femenino , Animales , Ratones , Virus Zika/genética , Enfermedades Neuroinflamatorias , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Transducción de Señal , Adenosina Trifosfato
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167097, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38408544

RESUMEN

Zika virus (ZIKV) infection was first associated with Central Nervous System (CNS) infections in Brazil in 2015, correlated with an increased number of newborns with microcephaly, which ended up characterizing the Congenital Zika Syndrome (CZS). Here, we investigated the impact of ZIKV infection on the functionality of iPSC-derived astrocytes. Besides, we extrapolated our findings to a Brazilian cohort of 136 CZS children and validated our results using a mouse model. Interestingly, ZIKV infection in neuroprogenitor cells compromises cell migration and causes apoptosis but does not interfere in astrocyte generation. Moreover, infected astrocytes lost their ability to uptake glutamate while expressing more glutamate transporters and secreted higher levels of IL-6. Besides, infected astrocytes secreted factors that impaired neuronal synaptogenesis. Since these biological endophenotypes were already related to Autism Spectrum Disorder (ASD), we extrapolated these results to a cohort of children, now 6-7 years old, and found seven children with ASD diagnosis (5.14 %). Additionally, mice infected by ZIKV revealed autistic-like behaviors, with a significant increase of IL-6 mRNA levels in the brain. Considering these evidence, we inferred that ZIKV infection during pregnancy might lead to synaptogenesis impairment and neuroinflammation, which could increase the risk for ASD.

4.
Neuropharmacology ; 245: 109828, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38158014

RESUMEN

Oxaliplatin (OXA) is an antineoplastic agent used for the treatment of cisplatin-resistant tumours, presenting lower incidence of nephrotoxicity and myelotoxicity than other platinum-based drugs. However, OXA treatment is highly associated with painful peripheral neuropathy, a well-known and relevant side effect caused by mitochondrial dysfunction. The transfer of functional exogenous mitochondria (mitotherapy) is a promising therapeutic strategy for mitochondrial diseases. We investigated the effect of mitotherapy on oxaliplatin-induced painful peripheral neuropathy (OIPN) in male mice. OIPN was induced by i.p. injections of oxaliplatin (3 mg/kg) over 5 consecutive days. Mechanical (von Frey test) and cold (acetone drop test) allodynia were evaluated between 7 and 17 days after the first OXA treatment. Mitochondria was isolated from donor mouse livers and mitochondrial oxidative phosphorylation was assessed with high resolution respirometry. After confirming that the isolated mitochondria were functional, the organelles were administered at the dose of 0.5 mg/kg of mitochondrial protein on days 1, 3 and 5. Treatment with OXA caused both mechanical and cold allodynia in mice that were significant 7 days after the initial injection of OXA and persisted for up to 17 days. Mitotherapy significantly prevented the development of both sensory alterations, and attenuated body weight loss induced by OXA. Mitotherapy also prevented spinal cord ERK1/2 activation, microgliosis and the increase in TLR4 mRNA levels. Mitotherapy prevented OIPN by inhibiting neuroinflammation and the consequent cellular overactivity in the spinal cord, presenting a potential therapeutic strategy for pain management in oncologic patients undergoing OXA treatment.


Asunto(s)
Antineoplásicos , Dolor , Enfermedades del Sistema Nervioso Periférico , Humanos , Masculino , Ratones , Animales , Oxaliplatino/toxicidad , Hiperalgesia/inducido químicamente , Hiperalgesia/prevención & control , Hiperalgesia/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/prevención & control , Antineoplásicos/toxicidad
5.
Mol Neurobiol ; 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37996731

RESUMEN

Few studies showed that neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), total tubulin-associated unit (TAU), and ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) may be related to neurological manifestations and severity during and after SARS-CoV-2 infection. The objective of this work was to investigate the relationship among nervous system biomarkers (NfL, TAU, GFAP, and UCH-L1), biochemical parameters, and viral loads with heterogeneous outcomes in a cohort of severe COVID-19 patients admitted in Intensive Care Unit (ICU) of a university hospital. For that, 108 subjects were recruited within the first 5 days at ICU. In parallel, 16 mild COVID-19 patients were enrolled. Severe COVID-19 group was divided between "deceased" and "survivor." All subjects were positive for SARS-CoV-2 detection. NfL, total TAU, GFAP, and UCH-L1 quantification in plasma was performed using SIMOA SR-X platform. Of 108 severe patients, 36 (33.33%) presented neurological manifestation and 41 (37.96%) died. All four biomarkers - GFAP, NfL, TAU, and UCH-L1 - were significantly higher among deceased patients in comparison to survivors (p < 0.05). Analyzing biochemical biomarkers, higher Peak Serum Ferritin, D-Dimer Peak, Gamma-glutamyltransferase, and C-Reactive Protein levels were related to death (p < 0.0001). In multivariate analysis, GFAP, NfL, TAU, UCH-L1, and Peak Serum Ferritin levels were correlated to death. Regarding SARS-CoV-2 viral load, no statistical difference was observed for any group. Thus, Ferritin, NFL, GFAP, TAU, and UCH-L1 are early biomarkers of severity and lethality of SARS-COV-2 infection and may be important tools for therapeutic decision-making in the acute phase of disease.

6.
Behav Brain Res ; 451: 114519, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37263423

RESUMEN

Zika virus (ZIKV) infection causes severe neurological consequences in both gestationally-exposed infants and adults. Sensorial gating deficits strongly correlate to the motor, sensorial and cognitive impairments observed in ZIKV-infected patients. However, no startle response or prepulse inhibition (PPI) assessment has been made in patients or animal models. In this study, we identified different outcomes according to the age of infection and sex in mice: neonatally infected animals presented an increase in PPI and delayed startle latency. However, adult-infected male mice presented lower startle amplitude, while a PPI impairment was observed 14 days after infection in both sexes. Our data further the understanding of the functional impacts of ZIKV on the developing and mature nervous system, which could help explain other behavioral and cognitive alterations caused by the virus. With this study, we support the startle reflex testing in ZIKV-exposed patients, especially infants, allowing for early detection of functional neuromotor damage and early intervention.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Femenino , Masculino , Animales , Ratones , Reflejo de Sobresalto/fisiología , Inhibición Prepulso , Infección por el Virus Zika/complicaciones , Estimulación Acústica
7.
Front Pharmacol ; 14: 1179723, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153798

RESUMEN

Introduction: Sepsis is defined as a multifactorial debilitating condition with high risks of death. The intense inflammatory response causes deleterious effects on the brain, a condition called sepsis-associated encephalopathy. Neuroinflammation or pathogen recognition are able to stress cells, resulting in ATP (Adenosine Triphosphate) release and P2X7 receptor activation, which is abundantly expressed in the brain. The P2X7 receptor contributes to chronic neurodegenerative and neuroinflammatory diseases; however, its function in long-term neurological impairment caused by sepsis remains unclear. Therefore, we sought to evaluate the effects of P2X7 receptor activation in neuroinflammatory and behavioral changes in sepsis-surviving mice. Methods: Sepsis was induced in wild-type (WT), P2X7-/-, and BBG (Brilliant Blue G)-treated mice by cecal ligation and perforation (CLP). On the thirteenth day after the surgery, the cognitive function of mice was assessed using the novel recognition object and Water T-maze tests. Acetylcholinesterase (AChE) activity, microglial and astrocytic activation markers, and cytokine production were also evaluated. Results: Initially, we observed that both WT and P2X7-/- sepsis-surviving mice showed memory impairment 13 days after surgery, once they did not differentiate between novel and familiar objects. Both groups of animals presented increased AChE activity in the hippocampus and cerebral cortex. However, the absence of P2X7 prevented partly this increase in the cerebral cortex. Likewise, P2X7 absence decreased ionized calcium-binding protein 1 (Iba-1) and glial fibrillary acidic protein (GFAP) upregulation in the cerebral cortex of sepsis-surviving animals. There was an increase in GFAP protein levels in the cerebral cortex but not in the hippocampus of both WT and P2X7-/- sepsis-surviving animals. Pharmacological inhibition or genetic deletion of P2X7 receptor attenuated the production of Interleukin-1ß (IL-1ß), Tumor necrosis factor-α (TNF-α), and Interleukin-10 (IL-10). Conclusion: The modulation of the P2X7 receptor in sepsis-surviving animals may reduce neuroinflammation and prevent cognitive impairment due to sepsis-associated encephalopathy, being considered an important therapeutic target.

8.
Front Immunol ; 14: 1158460, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37114062

RESUMEN

Despite long-term sequelae of COVID-19 are emerging as a substantial public health concern, the mechanism underlying these processes still unclear. Evidence demonstrates that SARS-CoV-2 Spike protein can reach different brain regions, irrespective of viral brain replication resulting in activation of pattern recognition receptors (PRRs) and neuroinflammation. Considering that microglia dysfunction, which is regulated by a whole array of purinergic receptors, may be a central event in COVID-19 neuropathology, we investigated the impact of SARS-CoV-2 Spike protein on microglial purinergic signaling. Here, we demonstrate that cultured microglial cells (BV2 line) exposed to Spike protein induce ATP secretion and upregulation of P2Y6, P2Y12, NTPDase2 and NTPDase3 transcripts. Also, immunocytochemistry analysis shows that spike protein increases the expression of P2X7, P2Y1, P2Y6, and P2Y12 in BV2 cells. Additional, hippocampal tissue of Spike infused animals (6,5ug/site, i.c.v.) presents increased mRNA levels of P2X7, P2Y1, P2Y6, P2Y12, NTPDase1, and NTPDase2. Immunohistochemistry experiments confirmed high expression of the P2X7 receptor in microglial cells in CA3/DG hippocampal regions after spike infusion. These findings suggest that SARS-CoV-2 Spike protein modulates microglial purinergic signaling and opens new avenues for investigating the potential of purinergic receptors to mitigate COVID-19 consequences.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Microglía/metabolismo , COVID-19/metabolismo , SARS-CoV-2
9.
Cell Rep ; 42(3): 112189, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36857178

RESUMEN

Cognitive dysfunction is often reported in patients with post-coronavirus disease 2019 (COVID-19) syndrome, but its underlying mechanisms are not completely understood. Evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein or its fragments are released from cells during infection, reaching different tissues, including the CNS, irrespective of the presence of the viral RNA. Here, we demonstrate that brain infusion of Spike protein in mice has a late impact on cognitive function, recapitulating post-COVID-19 syndrome. We also show that neuroinflammation and hippocampal microgliosis mediate Spike-induced memory dysfunction via complement-dependent engulfment of synapses. Genetic or pharmacological blockage of Toll-like receptor 4 (TLR4) signaling protects animals against synapse elimination and memory dysfunction induced by Spike brain infusion. Accordingly, in a cohort of 86 patients who recovered from mild COVID-19, the genotype GG TLR4-2604G>A (rs10759931) is associated with poor cognitive outcome. These results identify TLR4 as a key target to investigate the long-term cognitive dysfunction after COVID-19 infection in humans and rodents.


Asunto(s)
COVID-19 , Disfunción Cognitiva , Humanos , Animales , Ratones , COVID-19/complicaciones , Glicoproteína de la Espiga del Coronavirus/genética , SARS-CoV-2/metabolismo , Receptor Toll-Like 4 , Síndrome Post Agudo de COVID-19
11.
Homeopatia Méx ; (n.esp): 123-128, feb. 2023.
Artículo en Español | LILACS, HomeoIndex - Homeopatia | ID: biblio-1416733

RESUMEN

La eficacia y seguridad del tratamiento homeopático fueron investigadas en niños con amigdalitis recurrente para la que se indicaba cirugía. Métodos: Estudio clínico prospectivo, aleatorizado, doble ciego, que incluyó 40 niños de entre 3 y 7 años de edad; 20 niños fueron tratados con medicación homeopática y otros 20 niños, con placebo. El seguimiento fue de 4 meses por niño. La evaluación de los resultados fue clínica mediante un cuestionario estándar y examen clínico el primer y último día de tratamiento. La amigdalitis recurrente se definió como ocurrencia de 5 a 7 episodios de amigdalitis bacteriana aguda al año. Resultados: Del grupo de 18 niños que completó el tratamiento homeopático, 14 no presentó episodio alguno de amigdalitis bacteriana aguda; del grupo de 15 niños que recibió placebo, 5 pacientes no presentaron amigdalitis. Esta diferencia fue estadísticamente significativa (p = 0,015). Ninguno de los pacientes presentó efectos secundarios. Conclusiones: El tratamiento homeopático fue efectivo en niños con amigdalitis recurrente, en comparación con el placebo; a 14 niños (78%) ya no se les indicó cirugía. El tratamiento homeopático no se asoció con eventos adversos.


The efficacy and safety of homeopathic treatment was investigated on children with recurrent tonsillitis justifying surgery. Methods: Prospective, randomized,double-blind clinical trial that included 40 children between ages of 3 to 7 years old;20 children were treated with homeopathic medication and 20 children with placebo. Follow up was 4 months per child. Assessment of results was clinical by means of a standard questionnaire and clinical examination on the first and last day of treatment.Recurrent tonsillitis was defined as 5 to 7 episodes of bacterial acute tonsillitis per year. Results: From the group of 18 children who completed homeopathic treatment, 14 did not present any episode of acute bacterial tonsillitis; from the group of 15 children whoreceived placebo 5 patients did not present tonsillitis; this difference was statistically significant (p= 0,015). None of the patient exhibited side effects. Conclusions: Homeopathic treatment was effective in children with recurrent tonsillitis compared to placebo, 14 children (78%) were no longer indicated surgery. Homeopathic treatment was not associated with adverse events.


Asunto(s)
Humanos , Preescolar , Niño , Tonsilitis/tratamiento farmacológico , Medicamento Homeopático , Método Doble Ciego
12.
Mater Today Bio ; 18: 100525, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36619201

RESUMEN

Several human pathogens can cause long-lasting neurological damage. Despite the increasing clinical knowledge about these conditions, most still lack efficient therapeutic interventions. Gene therapy (GT) approaches comprise strategies to modify or adjust the expression or function of a gene, thus providing therapy for human diseases. Since recombinant nucleic acids used in GT have physicochemical limitations and can fail to reach the desired tissue, viral and non-viral vectors are applied to mediate gene delivery. Although viral vectors are associated to high levels of transfection, non-viral vectors are safer and have been further explored. Different types of nanosystems consisting of lipids, polymeric and inorganic materials are applied as non-viral vectors. In this review, we discuss potential targets for GT intervention in order to prevent neurological damage associated to infectious diseases as well as the role of nanosized non-viral vectors as agents to help the selective delivery of these gene-modifying molecules. Application of non-viral vectors for delivery of GT effectors comprise a promising alternative to treat brain inflammation induced by viral infections.

13.
Res Dev Disabil ; 131: 104361, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36240538

RESUMEN

BACKGROUND: Autism is characterized by social and non-social alterations observed beyond the clinical diagnosis. Research analyzing the expression of autism traits in the general population helps to unravel the relationship between autism dimensions and other associated variables, such as alexithymia and anxiety. The Autism-Spectrum Quotient (AQ) was developed to assess autism traits in the general population; however, inconsistent results regarding its dimensionality have emerged. AIMS: This study aimed to extend evidence about the AQ measurement model, and explore the multivariate relationship between autism traits, alexithymia, and trait anxiety. METHODS: 292 adults of the general population were recruited. An Exploratory Factor Analysis and Confirmatory Factor Analysis were performed to assess the factorial structure of AQ. A path analysis was carried out to explore the relationship between autism traits, alexithymia, and trait anxiety. RESULTS: The results supported a three-factor model of AQ. The path analysis model showed evidence of a significant role of alexithymia as a mediator of the relationship between autism traits and anxiety. CONCLUSIONS AND IMPLICATIONS: The present study provides empirical support for a three-factor model of AQ in the general population. The association between autism traits, alexithymia, and anxiety dimensions highlights the multidimensional nature of these variables and the need to account for their distinct impact on autism-related variables.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Adulto , Humanos , Síntomas Afectivos/epidemiología , Trastorno Autístico/epidemiología , Trastorno Autístico/diagnóstico , Ansiedad/epidemiología , Análisis Factorial , Trastornos de Ansiedad/epidemiología , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/diagnóstico
14.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36292931

RESUMEN

The Wnt/ß-catenin signaling pathway dictates cell proliferation and differentiation during embryonic development and tissue homeostasis. Its deregulation is associated with many pathological conditions, including neurodegenerative disease, frequently downregulated. The lack of efficient treatment for these diseases, including Alzheimer's disease (AD), makes Wnt signaling an attractive target for therapies. Interestingly, novel Wnt signaling activating compounds are less frequently described than inhibitors, turning the quest for novel positive modulators even more appealing. In that sense, natural compounds are an outstanding source of potential drug leads. Here, we combine different experimental models, cell-based approaches, neuronal culture assays, and rodent behavior tests with Xenopus laevis phenotypic analysis to characterize quercitrin, a natural compound, as a novel Wnt signaling potentiator. We find that quercitrin potentiates the signaling in a concentration-dependent manner and increases the occurrence of the Xenopus secondary axis phenotype mediated by Xwnt8 injection. Using a GSK3 biosensor, we describe that quercitrin impairs GSK3 activity and increases phosphorylated GSK3ß S9 levels. Treatment with XAV939, an inhibitor downstream of GSK3, impairs the quercitrin-mediated effect. Next, we show that quercitrin potentiates the Wnt3a-synaptogenic effect in hippocampal neurons in culture, which is blocked by XAV939. Quercitrin treatment also rescues the hippocampal synapse loss induced by intracerebroventricular injection of amyloid-ß oligomers (AßO) in mice. Finally, quercitrin rescues AßO-mediated memory impairment, which is prevented by XAV939. Thus, our study uncovers a novel function for quercitrin as a Wnt/ß-catenin signaling potentiator, describes its mechanism of action, and opens new avenues for AD treatments.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Ratones , Animales , Vía de Señalización Wnt , Péptidos beta-Amiloides/farmacología , beta Catenina/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Enfermedad de Alzheimer/patología , Quercetina/farmacología , Quercetina/uso terapéutico
15.
Int J Mol Sci ; 23(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35628394

RESUMEN

RoundUp® (RUp) is a comercial formulation containing glyphosate (N-(phosphono-methyl) glycine), and is the world's leading wide-spectrum herbicide used in agriculture. Supporters of the broad use of glyphosate-based herbicides (GBH) claim they are innocuous to humans, since the active compound acts on the inhibition of enzymes which are absent in human cells. However, the neurotoxic effects of GBH have already been shown in many animal models. Further, these formulations were shown to disrupt the microbiome of different species. Here, we investigated the effects of a lifelong exposure to low doses of the GBH-RUp on the gut environment, including morphological and microbiome changes. We also aimed to determine whether exposure to GBH-RUp could harm the developing brain and lead to behavioral changes in adult mice. To this end, animals were exposed to GBH-RUp in drinking water from pregnancy to adulthood. GBH-RUp-exposed mice had no changes in cognitive function, but developed impaired social behavior and increased repetitive behavior. GBH-Rup-exposed mice also showed an activation of phagocytic cells (Iba-1-positive) in the cortical brain tissue. GBH-RUp exposure caused increased mucus production and the infiltration of plama cells (CD138-positive), with a reduction in phagocytic cells. Long-term exposure to GBH-RUp also induced changes in intestinal integrity, as demonstrated by the altered expression of tight junction effector proteins (ZO-1 and ZO-2) and a change in the distribution of syndecan-1 proteoglycan. The herbicide also led to changes in the gut microbiome composition, which is also crucial for the establishment of the intestinal barrier. Altogether, our findings suggest that long-term GBH-RUp exposure leads to morphological and functional changes in the gut, which correlate with behavioral changes that are similar to those observed in patients with neurodevelopmental disorders.


Asunto(s)
Microbioma Gastrointestinal , Herbicidas , Adulto , Animales , Disbiosis/inducido químicamente , Femenino , Glicina/análogos & derivados , Glicina/toxicidad , Herbicidas/toxicidad , Humanos , Ratones , Embarazo , Glifosato
16.
PLoS One ; 17(1): e0262960, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35077490

RESUMEN

The assessment of mal-adaptive anxiety is crucial, considering the associated personal, economic, and societal burden. The State-Trait Inventory for Cognitive and Somatic Anxiety (STICSA) is a self-report instrument developed to provide multidimensional anxiety assessment in four dimensions: trait-cognitive, trait-somatic, state-cognitive and state-somatic. This research aimed to extend STICSA's psychometric studies through the assessment of its dimensionality, reliability, measurement invariance and nomological validity in the Portuguese population. Additionally, the predictive validity of STICSA-Trait was also evaluated, through the analysis of the relationship between self-reported trait anxiety and both the subjective and the psychophysiological response across distinct emotional situations. Similarly to previous studies, results supported both a four-factor and two separated bi-factor structures. Measurement invariance across sex groups was also supported, and good nomological validity was observed. Moreover, STICSA trait-cognitive dimension was associated with differences in self-reported arousal between groups of high/low anxiety, whereas STICSA trait-somatic dimension was related to differences in both the subjective and psychophysiological response. Together, these results support STICSA as a useful instrument for a broader anxiety assessment, crucial for an informed diagnosis and practice.


Asunto(s)
Trastornos de Ansiedad , Cognición , Emociones , Adolescente , Adulto , Anciano , Trastornos de Ansiedad/diagnóstico , Trastornos de Ansiedad/fisiopatología , Trastornos de Ansiedad/psicología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Portugal , Psicometría
17.
Behav Brain Res ; 419: 113680, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34822947

RESUMEN

Conversion of the cellular prion protein (PrPC) into the scrapie form (PrPSc) is the leading step to the development of transmissible spongiform encephalopathies (TSEs), still incurable neurodegenerative disorders. Interaction of PrPC with cellular and synthetic ligands that induce formation of scrapie-like conformations has been deeply investigated in vitro. Different nucleic acid (NA) sequences bind PrP and convert it to ß-sheet-rich or unfolded species; among such NAs, a 21-mer double-stranded DNA, D67, was shown to induce formation of PrP aggregates that were cytotoxic. However, in vivo effects of these PrP-DNA complexes were not explored. Herein, aggregates of recombinant full-length PrP (rPrP23-231) induced by interaction with the D67 aptamer were inoculated into the lateral ventricle of Swiss mice and acute effects were investigated. The aggregates had no influence on emotional, locomotor and motor behavior of mice. In contrast, mice developed cognitive impairment and hippocampal synapse loss, which was accompanied by intense activation of glial cells in this brain region. Our results suggest that the i.c.v. injection of rPrP:D67 aggregates is an interesting model to study the neurotoxicity of aggregated PrP in vivo, and that glial cell activation may be an important step for behavioral and cognitive dysfunction in prion diseases.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , Conducta Animal/efectos de los fármacos , Disfunción Cognitiva/inducido químicamente , Hipocampo/efectos de los fármacos , Proteínas Priónicas/farmacología , Sinapsis/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Ventrículos Laterales/efectos de los fármacos , Masculino , Ratones
18.
Fractal rev. psicol ; 34: e56505, 2022.
Artículo en Portugués | LILACS-Express | LILACS, Index Psicología - Revistas | ID: biblio-1421505
19.
Fractal rev. psicol ; 33(3): 163-164, set.-dez. 2021.
Artículo en Portugués | LILACS-Express | LILACS, Index Psicología - Revistas | ID: biblio-1360453
20.
PLoS Negl Trop Dis ; 15(11): e0009907, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34735450

RESUMEN

Zika virus (ZIKV) emerged as an important infectious disease agent in Brazil in 2016. Infection usually leads to mild symptoms, but severe congenital neurological disorders and Guillain-Barré syndrome have been reported following ZIKV exposure. Creating an effective vaccine against ZIKV is a public health priority. We describe the protective effect of an already licensed attenuated yellow fever vaccine (YFV, 17DD) in type-I interferon receptor knockout mice (A129) and immunocompetent BALB/c and SV-129 (A129 background) mice infected with ZIKV. YFV vaccination provided protection against ZIKV, with decreased mortality in A129 mice, a reduction in the cerebral viral load in all mice, and weight loss prevention in BALB/c mice. The A129 mice that were challenged two and three weeks after the first dose of the vaccine were fully protected, whereas partial protection was observed five weeks after vaccination. In all cases, the YFV vaccine provoked a substantial decrease in the cerebral viral load. YFV immunization also prevented hippocampal synapse loss and microgliosis in ZIKV-infected mice. Our vaccine model is T cell-dependent, with AG129 mice being unable to tolerate immunization (vaccination is lethal in this mouse model), indicating the importance of IFN-γ in immunogenicity. To confirm the role of T cells, we immunized nude mice that we demonstrated to be very susceptible to infection. Immunization with YFV and challenge 7 days after booster did not protect nude mice in terms of weight loss and showed partial protection in the survival curve. When we evaluated the humoral response, the vaccine elicited significant antibody titers against ZIKV; however, it showed no neutralizing activity in vitro and in vivo. The data indicate that a cell-mediated response promotes protection against cerebral infection, which is crucial to vaccine protection, and it appears to not necessarily require a humoral response. This protective effect can also be attributed to innate factors, but more studies are needed to strengthen this hypothesis. Our findings open the way to using an available and inexpensive vaccine for large-scale immunization in the event of a ZIKV outbreak.


Asunto(s)
Vacuna contra la Fiebre Amarilla/administración & dosificación , Infección por el Virus Zika/prevención & control , Virus Zika/fisiología , Animales , Anticuerpos Antivirales/inmunología , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunidad Celular , Interferón gamma/inmunología , Ratones , Ratones Endogámicos BALB C , Linfocitos T/inmunología , Vacunación , Células Vero , Fiebre Amarilla/virología , Virus de la Fiebre Amarilla/genética , Virus de la Fiebre Amarilla/inmunología , Virus Zika/genética , Virus Zika/inmunología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...